(0) Obligation:

Clauses:

p(X, Y) :- ','(q(X, Y), r(X)).
q(a, 0).
q(X, s(Y)) :- q(X, Y).
r(b) :- r(b).

Query: p(g,g)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

pA(T11, s(T12)) :- pA(T11, T12).
pB(T5, T6) :- pA(T5, T6).

Query: pB(g,g)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
pB_in: (b,b)
pA_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

pB_in_gg(T5, T6) → U2_gg(T5, T6, pA_in_gg(T5, T6))
pA_in_gg(T11, s(T12)) → U1_gg(T11, T12, pA_in_gg(T11, T12))
U1_gg(T11, T12, pA_out_gg(T11, T12)) → pA_out_gg(T11, s(T12))
U2_gg(T5, T6, pA_out_gg(T5, T6)) → pB_out_gg(T5, T6)

The argument filtering Pi contains the following mapping:
pB_in_gg(x1, x2)  =  pB_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
s(x1)  =  s(x1)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
pA_out_gg(x1, x2)  =  pA_out_gg
pB_out_gg(x1, x2)  =  pB_out_gg

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

pB_in_gg(T5, T6) → U2_gg(T5, T6, pA_in_gg(T5, T6))
pA_in_gg(T11, s(T12)) → U1_gg(T11, T12, pA_in_gg(T11, T12))
U1_gg(T11, T12, pA_out_gg(T11, T12)) → pA_out_gg(T11, s(T12))
U2_gg(T5, T6, pA_out_gg(T5, T6)) → pB_out_gg(T5, T6)

The argument filtering Pi contains the following mapping:
pB_in_gg(x1, x2)  =  pB_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
s(x1)  =  s(x1)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
pA_out_gg(x1, x2)  =  pA_out_gg
pB_out_gg(x1, x2)  =  pB_out_gg

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

PB_IN_GG(T5, T6) → U2_GG(T5, T6, pA_in_gg(T5, T6))
PB_IN_GG(T5, T6) → PA_IN_GG(T5, T6)
PA_IN_GG(T11, s(T12)) → U1_GG(T11, T12, pA_in_gg(T11, T12))
PA_IN_GG(T11, s(T12)) → PA_IN_GG(T11, T12)

The TRS R consists of the following rules:

pB_in_gg(T5, T6) → U2_gg(T5, T6, pA_in_gg(T5, T6))
pA_in_gg(T11, s(T12)) → U1_gg(T11, T12, pA_in_gg(T11, T12))
U1_gg(T11, T12, pA_out_gg(T11, T12)) → pA_out_gg(T11, s(T12))
U2_gg(T5, T6, pA_out_gg(T5, T6)) → pB_out_gg(T5, T6)

The argument filtering Pi contains the following mapping:
pB_in_gg(x1, x2)  =  pB_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
s(x1)  =  s(x1)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
pA_out_gg(x1, x2)  =  pA_out_gg
pB_out_gg(x1, x2)  =  pB_out_gg
PB_IN_GG(x1, x2)  =  PB_IN_GG(x1, x2)
U2_GG(x1, x2, x3)  =  U2_GG(x3)
PA_IN_GG(x1, x2)  =  PA_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x3)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PB_IN_GG(T5, T6) → U2_GG(T5, T6, pA_in_gg(T5, T6))
PB_IN_GG(T5, T6) → PA_IN_GG(T5, T6)
PA_IN_GG(T11, s(T12)) → U1_GG(T11, T12, pA_in_gg(T11, T12))
PA_IN_GG(T11, s(T12)) → PA_IN_GG(T11, T12)

The TRS R consists of the following rules:

pB_in_gg(T5, T6) → U2_gg(T5, T6, pA_in_gg(T5, T6))
pA_in_gg(T11, s(T12)) → U1_gg(T11, T12, pA_in_gg(T11, T12))
U1_gg(T11, T12, pA_out_gg(T11, T12)) → pA_out_gg(T11, s(T12))
U2_gg(T5, T6, pA_out_gg(T5, T6)) → pB_out_gg(T5, T6)

The argument filtering Pi contains the following mapping:
pB_in_gg(x1, x2)  =  pB_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
s(x1)  =  s(x1)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
pA_out_gg(x1, x2)  =  pA_out_gg
pB_out_gg(x1, x2)  =  pB_out_gg
PB_IN_GG(x1, x2)  =  PB_IN_GG(x1, x2)
U2_GG(x1, x2, x3)  =  U2_GG(x3)
PA_IN_GG(x1, x2)  =  PA_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x3)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_GG(T11, s(T12)) → PA_IN_GG(T11, T12)

The TRS R consists of the following rules:

pB_in_gg(T5, T6) → U2_gg(T5, T6, pA_in_gg(T5, T6))
pA_in_gg(T11, s(T12)) → U1_gg(T11, T12, pA_in_gg(T11, T12))
U1_gg(T11, T12, pA_out_gg(T11, T12)) → pA_out_gg(T11, s(T12))
U2_gg(T5, T6, pA_out_gg(T5, T6)) → pB_out_gg(T5, T6)

The argument filtering Pi contains the following mapping:
pB_in_gg(x1, x2)  =  pB_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
pA_in_gg(x1, x2)  =  pA_in_gg(x1, x2)
s(x1)  =  s(x1)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
pA_out_gg(x1, x2)  =  pA_out_gg
pB_out_gg(x1, x2)  =  pB_out_gg
PA_IN_GG(x1, x2)  =  PA_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PA_IN_GG(T11, s(T12)) → PA_IN_GG(T11, T12)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PA_IN_GG(T11, s(T12)) → PA_IN_GG(T11, T12)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PA_IN_GG(T11, s(T12)) → PA_IN_GG(T11, T12)
    The graph contains the following edges 1 >= 1, 2 > 2

(14) YES