(0) Obligation:
Clauses:
p(X, Y) :- ','(q(X, Y), r(X)).
q(a, 0).
q(X, s(Y)) :- q(X, Y).
r(b) :- r(b).
Query: p(g,g)
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph ICLP10.
(2) Obligation:
Clauses:
pA(T11, s(T12)) :- pA(T11, T12).
pB(T5, T6) :- pA(T5, T6).
Query: pB(g,g)
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
pB_in: (b,b)
pA_in: (b,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
pB_in_gg(T5, T6) → U2_gg(T5, T6, pA_in_gg(T5, T6))
pA_in_gg(T11, s(T12)) → U1_gg(T11, T12, pA_in_gg(T11, T12))
U1_gg(T11, T12, pA_out_gg(T11, T12)) → pA_out_gg(T11, s(T12))
U2_gg(T5, T6, pA_out_gg(T5, T6)) → pB_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
pB_in_gg(
x1,
x2) =
pB_in_gg(
x1,
x2)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
pA_in_gg(
x1,
x2) =
pA_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x3)
pA_out_gg(
x1,
x2) =
pA_out_gg
pB_out_gg(
x1,
x2) =
pB_out_gg
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
pB_in_gg(T5, T6) → U2_gg(T5, T6, pA_in_gg(T5, T6))
pA_in_gg(T11, s(T12)) → U1_gg(T11, T12, pA_in_gg(T11, T12))
U1_gg(T11, T12, pA_out_gg(T11, T12)) → pA_out_gg(T11, s(T12))
U2_gg(T5, T6, pA_out_gg(T5, T6)) → pB_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
pB_in_gg(
x1,
x2) =
pB_in_gg(
x1,
x2)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
pA_in_gg(
x1,
x2) =
pA_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x3)
pA_out_gg(
x1,
x2) =
pA_out_gg
pB_out_gg(
x1,
x2) =
pB_out_gg
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
PB_IN_GG(T5, T6) → U2_GG(T5, T6, pA_in_gg(T5, T6))
PB_IN_GG(T5, T6) → PA_IN_GG(T5, T6)
PA_IN_GG(T11, s(T12)) → U1_GG(T11, T12, pA_in_gg(T11, T12))
PA_IN_GG(T11, s(T12)) → PA_IN_GG(T11, T12)
The TRS R consists of the following rules:
pB_in_gg(T5, T6) → U2_gg(T5, T6, pA_in_gg(T5, T6))
pA_in_gg(T11, s(T12)) → U1_gg(T11, T12, pA_in_gg(T11, T12))
U1_gg(T11, T12, pA_out_gg(T11, T12)) → pA_out_gg(T11, s(T12))
U2_gg(T5, T6, pA_out_gg(T5, T6)) → pB_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
pB_in_gg(
x1,
x2) =
pB_in_gg(
x1,
x2)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
pA_in_gg(
x1,
x2) =
pA_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x3)
pA_out_gg(
x1,
x2) =
pA_out_gg
pB_out_gg(
x1,
x2) =
pB_out_gg
PB_IN_GG(
x1,
x2) =
PB_IN_GG(
x1,
x2)
U2_GG(
x1,
x2,
x3) =
U2_GG(
x3)
PA_IN_GG(
x1,
x2) =
PA_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x3)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PB_IN_GG(T5, T6) → U2_GG(T5, T6, pA_in_gg(T5, T6))
PB_IN_GG(T5, T6) → PA_IN_GG(T5, T6)
PA_IN_GG(T11, s(T12)) → U1_GG(T11, T12, pA_in_gg(T11, T12))
PA_IN_GG(T11, s(T12)) → PA_IN_GG(T11, T12)
The TRS R consists of the following rules:
pB_in_gg(T5, T6) → U2_gg(T5, T6, pA_in_gg(T5, T6))
pA_in_gg(T11, s(T12)) → U1_gg(T11, T12, pA_in_gg(T11, T12))
U1_gg(T11, T12, pA_out_gg(T11, T12)) → pA_out_gg(T11, s(T12))
U2_gg(T5, T6, pA_out_gg(T5, T6)) → pB_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
pB_in_gg(
x1,
x2) =
pB_in_gg(
x1,
x2)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
pA_in_gg(
x1,
x2) =
pA_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x3)
pA_out_gg(
x1,
x2) =
pA_out_gg
pB_out_gg(
x1,
x2) =
pB_out_gg
PB_IN_GG(
x1,
x2) =
PB_IN_GG(
x1,
x2)
U2_GG(
x1,
x2,
x3) =
U2_GG(
x3)
PA_IN_GG(
x1,
x2) =
PA_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x3)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PA_IN_GG(T11, s(T12)) → PA_IN_GG(T11, T12)
The TRS R consists of the following rules:
pB_in_gg(T5, T6) → U2_gg(T5, T6, pA_in_gg(T5, T6))
pA_in_gg(T11, s(T12)) → U1_gg(T11, T12, pA_in_gg(T11, T12))
U1_gg(T11, T12, pA_out_gg(T11, T12)) → pA_out_gg(T11, s(T12))
U2_gg(T5, T6, pA_out_gg(T5, T6)) → pB_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
pB_in_gg(
x1,
x2) =
pB_in_gg(
x1,
x2)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
pA_in_gg(
x1,
x2) =
pA_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x3)
pA_out_gg(
x1,
x2) =
pA_out_gg
pB_out_gg(
x1,
x2) =
pB_out_gg
PA_IN_GG(
x1,
x2) =
PA_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PA_IN_GG(T11, s(T12)) → PA_IN_GG(T11, T12)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PA_IN_GG(T11, s(T12)) → PA_IN_GG(T11, T12)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- PA_IN_GG(T11, s(T12)) → PA_IN_GG(T11, T12)
The graph contains the following edges 1 >= 1, 2 > 2
(14) YES